Stability of a mixed additive and cubic functional equation in quasi-Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces

and Applied Analysis 3 vector spaces X and Y is a solution of 1.5 if and only if there exists a unique function C : X × X × X → Y such that f x C x, x, x for all x ∈ X, and C is symmetric for each fixed one variable and is additive for fixed two variables see also 20 . The quartic functional equation 1.6 was introduced by Rassias 21 in 2000 and then in 2005 was employed by Park and Bae 22 and o...

متن کامل

Orthogonal stability of mixed type additive and cubic functional equations

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of Ratz.

متن کامل

On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[    fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),]    where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...

متن کامل

Approximate mixed additive and quadratic functional in 2-Banach spaces

In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.

متن کامل

On the Hyers-Ulam Stability of a General Mixed Additive and Cubic Functional Equation in n-Banach Spaces

and Applied Analysis 3 Definition 1.4. A sequence {xk} in an n-normed space X is said to converge to some x ∈ X in the n-norm if lim k→∞ ∥ ∥xk − x, y2, . . . , yn ∥ ∥ 0, 1.4 for every y2, . . . , yn ∈ X. Definition 1.5. A sequence {xk} in an n-normed space X is said to be a Cauchy sequence with respect to the n-norm if lim k,l→∞ ∥ ∥xk − xl, y2, . . . , yn ∥ ∥ 0, 1.5 for every y2, . . . , yn ∈ X...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2007.12.039